skip to main content


Search for: All records

Creators/Authors contains: "Choi, Hyunyong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The emergence of scalar Higgs-type amplitude modes in systems where symmetry is spontaneously broken has been a highly successful, paradigmatic description of phase transitions, with implications ranging from high-energy particle physics to low-energy condensed matter systems. Here, we uncover two successive high temperature phase transitions in the pyrochlore magnet Nd2Ru2O7atTN = 147 K andT* = 97 K, that lead to giant phonon instabilities and culminate in the emergence of a highly coherent excitation. This coherent excitation, distinct from other phonons and from conventional magnetic modes, stabilizes at a low energy of 3 meV. We assign it to a collective Higgs-type amplitude mode, that involves bond energy modulations of the Ru4tetrahedra. Its striking two-fold symmetry, incompatible with the underlying crystal structure, highlights the possibility of multiple entangled broken symmetries.

     
    more » « less
  2. Strong interactions between excitons are a characteristic feature of two-dimensional (2D) semiconductors, determining important excitonic properties, such as exciton lifetime, coherence, and photon-emission efficiency. Rhenium disulfide (ReS2), a member of the 2D transition-metal dichalcogenide (TMD) family, has recently attracted great attention due to its unique excitons that exhibit excellent polarization selectivity and coherence features. However, an in-depth understanding of exciton-exciton interactions in ReS2 is still lacking. Here we used ultrafast pump-probe spectroscopy to study exciton-exciton interactions in monolayer (1L), bilayer (2L), and triple layer ReS2. We directly measure the rate of exciton-exciton annihilation, a representative Auger-type interaction between excitons. It decreases with increasing layer number, as observed in other 2D TMDs. However, while other TMDs exhibit a sharp weakening of exciton-exciton annihilation between 1L and 2L, such behavior was not observed in ReS2. We attribute this distinct feature in ReS2 to the relatively weak interlayer coupling, which prohibits a substantial change in the electronic structure when the thickness varies. This work not only highlights the unique excitonic properties of ReS2 but also provides novel insight into the thickness dependence of exciton-exciton interactions in 2D systems. 
    more » « less